Saturday, 30 December 2017

Previsão média móvel sas


Médias móveis: Como usá-los Algumas das principais funções de uma média móvel são identificar tendências e reversões. Medir a força de um momento de ativos e determinar áreas potenciais onde um ativo vai encontrar apoio ou resistência. Nesta seção, iremos apontar como diferentes períodos de tempo podem monitorar o momento e como as médias móveis podem ser benéficas na definição de stop-loss. Além disso, vamos abordar algumas das capacidades e limitações de médias móveis que se deve considerar quando usá-los como parte de uma rotina de negociação. Tendência Identificar as tendências é uma das principais funções das médias móveis, que são utilizados pela maioria dos comerciantes que procuram fazer a tendência de seu amigo. As médias móveis são indicadores de atraso. O que significa que eles não prevêem novas tendências, mas confirmam as tendências uma vez estabelecidas. Como você pode ver na Figura 1, um estoque é considerado em uma tendência de alta quando o preço está acima de uma média móvel ea média está inclinada para cima. Por outro lado, um comerciante usará um preço abaixo de uma média descendente inclinada para confirmar uma tendência de baixa. Muitos comerciantes só consideram manter uma posição longa em um ativo quando o preço está negociando acima de uma média móvel. Esta regra simples pode ajudar a garantir que a tendência funciona no favor dos comerciantes. Momentum Muitos comerciantes iniciantes perguntam como é possível medir o momentum e como médias móveis podem ser usados ​​para enfrentar tal façanha. A resposta simples é prestar muita atenção aos períodos de tempo usados ​​na criação da média, pois cada período de tempo pode fornecer informações valiosas sobre diferentes tipos de momentum. Em geral, momentum de curto prazo pode ser medido olhando para médias móveis que se concentram em períodos de tempo de 20 dias ou menos. Olhando para as médias móveis que são criadas com um período de 20 a 100 dias é geralmente considerado como uma boa medida de médio prazo momento. Finalmente, qualquer média móvel que usa 100 dias ou mais no cálculo pode ser usada como uma medida de momentum de longo prazo. O senso comum deve dizer-lhe que uma média móvel de 15 dias é uma medida mais apropriada do momentum de curto prazo do que uma média móvel de 200 dias. Um dos melhores métodos para determinar a força ea direção de um momento de ativos é colocar três médias móveis em um gráfico e, em seguida, prestar muita atenção para a forma como eles se acumulam em relação um ao outro. As três médias móveis que são geralmente utilizadas têm margens de tempo variáveis ​​numa tentativa de representar movimentos de preços a curto, médio e longo prazo. Na Figura 2, observa-se forte impulso ascendente quando as médias de curto prazo se situam acima das médias de longo prazo e as duas médias são divergentes. Por outro lado, quando as médias de curto prazo estão situadas abaixo das médias de longo prazo, a dinâmica está na direção descendente. Suporte Outro uso comum de médias móveis é determinar suportes de preços potenciais. Não é preciso muita experiência em lidar com médias móveis para perceber que a queda do preço de um recurso muitas vezes parar e inverter direção no mesmo nível que uma média importante. Por exemplo, na Figura 3 você pode ver que a média móvel de 200 dias foi capaz de sustentar o preço do estoque depois que ele caiu de sua alta perto de 32. Muitos comerciantes vão antecipar um salto fora das principais médias móveis e usará outros Indicadores técnicos como confirmação do movimento esperado. Resistência Uma vez que o preço de um ativo cai abaixo de um nível influente de suporte, como a média móvel de 200 dias, não é raro ver a ação média como uma barreira forte que impede que os investidores empurrar o preço de volta acima dessa média. Como você pode ver a partir do gráfico abaixo, essa resistência é muitas vezes usado por comerciantes como um sinal para ter lucros ou para fechar qualquer posições longas existentes. Muitos vendedores curtos também usarão essas médias como pontos de entrada porque o preço geralmente salta fora da resistência e continua seu movimento mais baixo. Se você é um investidor que está mantendo uma posição longa em um ativo que está negociando abaixo das principais médias móveis, pode ser no seu melhor interesse para observar esses níveis de perto, porque eles podem afetar muito o valor de seu investimento. Stop-Losses As características de apoio e resistência de médias móveis torná-los uma ótima ferramenta para gerenciamento de risco. A capacidade de mover médias para identificar lugares estratégicos para definir stop-loss ordens permite que os comerciantes para cortar perder posições antes que eles possam crescer qualquer maior. Como você pode ver na Figura 5, os comerciantes que detêm uma posição longa em um estoque e definir suas ordens stop-loss abaixo médias influentes podem salvar-se muito dinheiro. O uso de médias móveis para definir ordens stop-loss é a chave para qualquer estratégia de negociação bem sucedida. Começando na versão 6.08 do SAS System, PROC EXPAND no software SAS / ETS pode ser usado para fazer uma variedade de transformações de dados. Essas transformações incluem: leads, atrasos, médias móveis ponderadas e não ponderadas, somas móveis e somas cumulativas, para citar apenas algumas. Muitas novas transformações foram adicionadas na versão 6.12, incluindo especificações separadas para médias centradas e para trás. Essas novas transformações tornaram necessário modificar a sintaxe de algumas das transformações suportadas antes da Versão 6.12. Exemplos de como especificar a sintaxe para médias centradas e para trás movendo usando a versão 6.11 e anterior e versão 6.12 e posterior são dadas abaixo. PROC EXPAND pode calcular uma média móvel centrada ou uma média móvel para trás. Uma média móvel centrada em 5 períodos é calculada pela média de um total de 5 valores consecutivos da série (o valor do período corrente, além dos dois valores imediatamente anteriores e dois valores imediatamente a seguir ao valor actual). Uma média de retrocesso de 5 períodos é calculada pela média do valor do período corrente com os valores dos 4 períodos imediatamente anteriores. A sintaxe a seguir ilustra como usar a especificação TRANSFORM (MOVAVE n) para calcular uma média móvel centrada em 5 períodos usando a Versão 6.11 ou anterior: Para calcular uma média móvel de retrocesso de n períodos usando a Versão 6.11 ou anterior, use TRANSFORM (MOVAVE) N LAG k) especificação, onde k (n-1) / 2 se n é ímpar ou onde k (n-2) / 2 se n é par. A seguinte sintaxe ilustra como usar a especificação TRANSFORM (CMOVAVE n) para calcular uma média móvel centrada em 5 períodos usando a Liberação 6.12 ou Mais tarde: A seguinte sintaxe semelhante ilustra como usar a especificação TRANSFORM (MOVAVE n) para calcular uma média de retrocesso de 5 períodos usando a Versão 6.12 ou posterior: Para obter mais informações, consulte Operações de Transformação no capítulo EXPAND do Guia do Usuário do SAS / ETS . Se você não tiver acesso ao SAS / ETS, poderá calcular uma média móvel na etapa DATA, conforme ilustrado neste programa de exemplo. Sistemas Operacionais e Informações de LiberaçãoMovendo modelos de suavização média e exponencial Como um primeiro passo para ir além dos modelos de média, modelos de caminhada aleatória e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é localmente estacionária com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e então usamos isso como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio e o modelo aleatório-andar-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é muitas vezes chamado de uma versão quotsmoothedquot da série original, porque a média de curto prazo tem o efeito de suavizar os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série temporal Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) / 2, o que implica que a estimativa da média local tende a ficar para trás Valor real da média local em cerca de (m1) / 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) / 2 relativa ao período para o qual a previsão é calculada: é a quantidade de tempo em que as previsões tenderão a ficar para trás dos pontos de inflexão na dados. Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais pequenos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentarmos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: A média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é de 3 ((51) / 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se alargar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais um efeito retardado: A idade média é agora de 5 períodos ((91) / 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de inflexão em cerca de 10 períodos. Qual a quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações igualmente e completamente ignora todas as observações anteriores. (Voltar ao início da página.) Marrons Simples Exponencial Suavização (exponencialmente ponderada média móvel) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que, se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1/945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado através da avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1/945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma dada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Utilizando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é de 1 / 0.2961 3.4 períodos, que é semelhante ao de um 6-termo simples de movimento média. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA eo modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoavelmente aparente, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. De modo que a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quimétrico ARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante à série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada ao longo de todo o período de estimação. Não é possível fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunção com uma transformação de logaritmo natural, ou pode basear-se noutras informações independentes relativas às perspectivas de crescimento a longo prazo . (Retornar ao início da página.) Browns Linear (ie double) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que geralmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências a curto prazo Se uma série exibe uma taxa variável de crescimento ou um padrão cíclico que se destaca claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo de suavização exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo). A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida pela aplicação de suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, enganar um pouco e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não são permitidos variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é computada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de alisamento de tendência 946 é análoga à da constante de alisamento de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é usada na estimativa do nível local da série, a idade média dos dados que é usada na estimativa da tendência local é proporcional a 1/946, embora não exatamente igual a isto. Neste caso, isto é 1 / 0.006 125. Este número é muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100 , Assim que este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pelo ajuste do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto estar estimando uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de suavização constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo uma média da tendência ao longo dos últimos 20 períodos aproximadamente. Here8217s o que o lote de previsão parece se ajustarmos 946 0.1 mantendo 945 0.3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Alisamento exponencial simples com alfa 0,5 (D) Alisamento exponencial simples com alfa 0,3 (E) Alisamento exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, então realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos quanto à existência de uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também fornecerá mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar da sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 se torna maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao início da página.) Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no GoogleMoving Médias: Quais são eles Entre os mais populares indicadores técnicos, médias móveis são usados ​​para medir a direção da tendência atual. Cada tipo de média móvel (normalmente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinada, a média resultante é então plotada em um gráfico, a fim de permitir que os comerciantes olhar para os dados suavizados, em vez de se concentrar nas flutuações do preço do dia-a-dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando-se a média aritmética de um dado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e dividiria o resultado por 10. Na Figura 1, a soma dos preços dos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, em vez disso, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em consideração os últimos 10 pontos de dados, a fim de dar aos comerciantes uma idéia de como um ativo é fixado o preço em relação aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser eliminados do conjunto e novos pontos de dados devem entrar para substituí-los. Assim, o conjunto de dados está em constante movimento para contabilizar novos dados à medida que se torna disponível. Esse método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) move-se para a direita eo último valor de 15 é eliminado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a média da diminuição do conjunto de dados, o que faz, nesse caso de 11 para 10. O que as médias móveis parecem uma vez? MA foram calculados, eles são plotados em um gráfico e, em seguida, conectado para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos de comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você vai crescer acostumado com eles como o tempo passa. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e como ela se parece, bem introduzir um tipo diferente de média móvel e examinar como ele difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a essa crítica, os comerciantes começaram a dar mais peso aos dados recentes, o que desde então levou à invenção de vários tipos de novas médias, a mais popular das quais é a média móvel exponencial (EMA). Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Novas informações. Aprender a equação um pouco complicada para o cálculo de um EMA pode ser desnecessário para muitos comerciantes, uma vez que quase todos os pacotes gráficos fazer os cálculos para você. No entanto, para você geeks matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há valor disponível para usar como o EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Fornecemos uma planilha de exemplo que inclui exemplos reais de como calcular uma média móvel simples e uma média móvel exponencial. A diferença entre o EMA e SMA Agora que você tem uma melhor compreensão de como o SMA eo EMA são calculados, vamos dar uma olhada em como essas médias são diferentes. Ao olhar para o cálculo da EMA, você vai notar que mais ênfase é colocada sobre os pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente à variação dos preços. Observe como a EMA tem um valor maior quando o preço está subindo, e cai mais rápido do que o SMA quando o preço está em declínio. Esta responsividade é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que significam os diferentes dias As médias móveis são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que desejar ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será às mudanças de preços. Quanto mais tempo o intervalo de tempo, menos sensível ou mais suavizado, a média será. Não há um frame de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual funciona melhor para você é experimentar com uma série de diferentes períodos de tempo até encontrar um que se adapta à sua estratégia. Médias móveis: Como usá-los Subscreva as notícias para usar para obter as últimas informações e análises Obrigado por se inscrever no Investopedia Insights - Notícias para usar.

No comments:

Post a Comment